Główny Inny Wskaźnik fałszywych odkryć

Wskaźnik fałszywych odkryć

Przegląd

Oprogramowanie

Opis

różnica w założeniach dotyczących różnicy

Strony internetowe

Odczyty

Kursy

Przegląd

Ta strona zawiera krótki opis wskaźnika fałszywego wykrywania (FDR) i zawiera listę zasobów z adnotacjami.

Opis

Analizując wyniki badań całego genomu, często przeprowadza się jednocześnie tysiące testów hipotez. Stosowanie tradycyjnej metody Bonferroniego do korygowania wielokrotnych porównań jest zbyt konserwatywne, ponieważ ochrona przed występowaniem wyników fałszywie dodatnich doprowadzi do wielu błędnych wyników. Aby móc zidentyfikować jak najwięcej znaczących porównań, przy jednoczesnym zachowaniu niskiego współczynnika fałszywie pozytywnych, wykorzystuje się współczynnik fałszywych odkryć (FDR) i jego odpowiednik, wartość q.

Zdefiniowanie problemu
Podczas przeprowadzania testów hipotez, na przykład w celu sprawdzenia, czy dwie średnie różnią się znacząco, obliczamy wartość p, która jest prawdopodobieństwem uzyskania statystyki testowej, która jest równie lub bardziej ekstremalna niż obserwowana, zakładając, że hipoteza zerowa jest prawdziwa. Gdybyśmy mieli na przykład wartość p 0,03, oznaczałoby to, że gdyby nasza hipoteza zerowa była prawdziwa, istniałaby 3% szansa na uzyskanie obserwowanej statystyki testowej lub bardziej ekstremalnej. Ponieważ jest to małe prawdopodobieństwo, odrzucamy hipotezę zerową i mówimy, że średnie są znacząco różne. Zwykle lubimy utrzymywać to prawdopodobieństwo poniżej 5%. Kiedy ustawiamy naszą wartość alfa na 0,05, mówimy, że chcemy, aby prawdopodobieństwo, że wynik zerowy zostanie nazwany znaczącym, było mniejsze niż 5%. Innymi słowy, chcemy, aby prawdopodobieństwo błędu I typu lub fałszywie pozytywnego wyniku było mniejsze niż 5%.

Kiedy przeprowadzamy wielokrotne porównania (każdy test będę nazywał cechą), mamy zwiększone prawdopodobieństwo fałszywych trafień. Im więcej masz funkcji, tym większe prawdopodobieństwo, że zerowa funkcja zostanie nazwana znaczącą. Współczynnik fałszywie dodatnich (FPR) lub współczynnik błędu porównania (PCER) to oczekiwana liczba wyników fałszywie dodatnich spośród wszystkich przeprowadzonych testów hipotez. Jeśli więc kontrolujemy FPR na poziomie alfa 0,05, gwarantujemy, że odsetek wyników fałszywie dodatnich (cech zerowych nazywanych istotnymi) we wszystkich testach hipotez wynosi 5% lub mniej. Metoda ta stwarza problem, gdy przeprowadzamy dużą liczbę testów hipotez. Na przykład, gdybyśmy przeprowadzili badanie całego genomu, analizując zróżnicowaną ekspresję genów między tkanką nowotworową a zdrową tkanką i przetestowalibyśmy 1000 genów i kontrolowali FPR, średnio 50 prawdziwie zerowych genów zostanie nazwanych znaczącymi. Ta metoda jest zbyt liberalna, ponieważ nie chcemy mieć tak dużej liczby fałszywych trafień.

Zazwyczaj procedury wielokrotnych porównań kontrolują zamiast tego współczynnik błędu rodzinnego (FWER), który jest prawdopodobieństwem uzyskania jednego lub więcej wyników fałszywie dodatnich ze wszystkich przeprowadzonych testów hipotez. Powszechnie stosowana korekcja Bonferroniego kontroluje FWER. Jeśli przetestujemy każdą hipotezę na poziomie istotności (alfa/# testów hipotez), gwarantujemy, że prawdopodobieństwo wystąpienia jednego lub więcej wyników fałszywie dodatnich jest mniejsze niż alfa. Więc jeśli alfa wynosiła 0,05 i testowaliśmy nasze 1000 genów, testowalibyśmy każdą wartość p na poziomie istotności 0,00005, aby zagwarantować, że prawdopodobieństwo wystąpienia jednego lub więcej wyników fałszywie dodatnich wynosi 5% lub mniej. Jednak ochrona przed jakimkolwiek pojedynczym fałszywie pozytywnym wynikiem może być zbyt surowa dla badań całego genomu i może prowadzić do wielu pominiętych wyników, zwłaszcza jeśli spodziewamy się, że będzie wiele prawdziwych pozytywnych wyników.

Kontrolowanie wskaźnika fałszywych odkryć (FDR) to sposób na zidentyfikowanie jak największej liczby istotnych cech przy stosunkowo niskim odsetku fałszywych trafień.

Kroki kontrolowania wskaźnika fałszywych odkryć:

  • Kontrola FDR na poziomie α * (tj. kontrolowany jest oczekiwany poziom fałszywych odkryć podzielony przez całkowitą liczbę odkryć)

E [V⁄R]

  • Oblicz wartości p dla każdego testu i kolejności hipotez (od najmniejszej do największej, P(min)…….P(max))

  • Dla i-tej zamówionej wartości p sprawdź, czy spełnione są następujące warunki:

P (i) ≤ α × i / m

dr. Gary Miller

Jeśli prawda, to znacząca

*Ograniczenie: jeśli poziom błędu (α) bardzo duży może prowadzić do zwiększonej liczby wyników fałszywie dodatnich wśród istotnych wyników

Wskaźnik fałszywych odkryć (FDR)

FDR to wskaźnik, w którym funkcje zwane znaczącymi są naprawdę zerowe.
FDR = oczekiwany (# fałszywe przewidywania/ # łącznie przewidywania)

FDR to wskaźnik, w którym funkcje zwane znaczącymi są naprawdę zerowe. FDR na poziomie 5% oznacza, że ​​spośród wszystkich cech określanych jako znaczące, 5% z nich jest naprawdę zerowych. Tak jak ustawiamy alfa jako próg dla wartości p w celu kontrolowania FPR, możemy również ustawić próg dla wartości q, która jest analogiem FDR wartości p. Próg wartości p (alfa) 0,05 daje FPR na poziomie 5% wśród wszystkich prawdziwie zerowych cech. Próg wartości q wynoszący 0,05 daje FDR na poziomie 5% wśród wszystkich cech określanych jako istotne. Wartość q to oczekiwany odsetek wyników fałszywie dodatnich wśród wszystkich cech, które są lub bardziej skrajne niż obserwowane.

W naszym badaniu 1000 genów powiedzmy, że gen Y miał wartość p 0,00005 i wartość q 0,03. Prawdopodobieństwo, że statystyka testowa genu o niezróżnicowanej ekspresji będzie tak samo lub bardziej ekstremalna, jak statystyka testowa dla genu Y wynosi 0,00005. Jednak statystyka testowa genu Y może być bardzo ekstremalna i być może ta statystyka testowa jest mało prawdopodobna dla genu o zróżnicowanej ekspresji. Jest całkiem możliwe, że naprawdę istnieją geny o zróżnicowanej ekspresji, których statystyki testowe są mniej ekstremalne niż gen Y. Użycie wartości q równej 0,03 pozwala nam powiedzieć, że 3% genów jest lub bardziej skrajnych (tj. genów, które mają niższe p- wartości), ponieważ gen Y są fałszywie pozytywne. Korzystanie z wartości q pozwala nam zdecydować, ile fałszywych trafień jesteśmy w stanie zaakceptować spośród wszystkich cech, które nazywamy istotnymi. Jest to szczególnie przydatne, gdy chcemy dokonać dużej liczby odkryć w celu późniejszego potwierdzenia (tj. Badanie pilotażowe lub analizy eksploracyjne, na przykład, jeśli zrobiliśmy mikromacierz ekspresji genów, aby wybrać geny o zróżnicowanej ekspresji do potwierdzenia za pomocą PCR w czasie rzeczywistym). Jest to również przydatne w badaniach całego genomu, w których oczekujemy, że znaczna część cech będzie naprawdę alternatywna i nie chcemy ograniczać naszej zdolności odkrywania.

FDR ma kilka użytecznych właściwości. Jeśli wszystkie hipotezy zerowe są prawdziwe (nie ma prawdziwie alternatywnych wyników), FDR=FWER. Gdy istnieje pewna liczba prawdziwie alternatywnych hipotez, sterowanie FWER automatycznie kontroluje również FDR.

Moc metody FDR (przypomnijmy, że moc jest prawdopodobieństwem odrzucenia hipotezy zerowej, gdy alternatywa jest prawdziwa) jest jednakowo większa niż metody Bonferroniego. Przewaga mocy FDR nad metodami Bonferroniego wzrasta wraz ze wzrostem liczby testów hipotez.

Oszacowanie FDR
(Z Piętra i Tibshirani, 2003)

Definicje:t: prógV: liczba wyników fałszywie dodatnichS: liczba cech zwanych znaczącymi0: liczba rzeczywiście zerowych cechm: całkowita liczba testów hipotez (cech)
FDR przy pewnym progu, t, to FDR(t). FDR(t) ≈ E[V(t)]/E[S(t)] –> FDR na pewnym progu można oszacować jako oczekiwaną liczbę fałszywych alarmów na tym progu podzieloną przez oczekiwaną liczbę cech zwanych istotnymi na tym progu.
Jak szacujemy E[S(t)]?
E[S(t)] to po prostu S(t), liczba obserwowanych wartości p ≤ t (tj. liczba cech, które nazywamy istotnymi dla wybranego progu). Prawdopodobieństwo, że zerowa wartość p jest ≤ t wynosi t (gdy alfa=0,05, istnieje 5% prawdopodobieństwo, że prawdziwie zerowa cecha ma wartość p, która przypadkowo jest poniżej progu i dlatego jest nazywana istotną).
Jak oszacować E[V(t)]?
E[V(t)]=m0*t –> oczekiwana liczba wyników fałszywie dodatnich dla danego progu równa się liczbie cech prawdziwie zerowych razy prawdopodobieństwo, że cecha zerowa zostanie nazwana istotną.
Jak szacujemy m0?
Prawdziwa wartość m0 jest nieznana. Możemy oszacować proporcję cech, które są rzeczywiście zerowe, m0/m = π0.
Zakładamy, że wartości p cech zerowych będą równomiernie rozłożone (mają rozkład płaski) między [0,1]. Wysokość rozkładu płaskiego daje konserwatywne oszacowanie całkowitej proporcji zerowych wartości p, π0. Na przykład poniższy obraz zaczerpnięty z Storey i Tibshirani (2003) jest histogramem gęstości 3000 wartości p dla 3000 genów z badania ekspresji genów. Linia kropkowana przedstawia wysokość płaskiej części histogramu. Spodziewamy się, że naprawdę zerowe funkcje utworzą ten płaski rozkład od [0,1], a prawdziwie alternatywne funkcje będą bliższe 0.

π0 jest kwantyfikowane jako , gdzie lambda jest parametrem strojenia (na przykład na powyższym obrazku możemy wybrać lambda=0,5, ponieważ po wartości p równej 0,5 rozkład jest dość płaski. Proporcja prawdziwie zerowych cech jest równa liczbie p -wartości większe niż lambda podzielone przez m(1-lambda). Gdy lambda zbliża się do 0 (gdy większość rozkładu jest płaska), mianownik będzie wynosił w przybliżeniu m, podobnie jak licznik, ponieważ większość wartości p będzie większa niż lambda, a π0 będzie wynosić około 1 (wszystkie cechy są puste).
Wybór lambdy jest zwykle zautomatyzowany przez programy statystyczne.

Teraz, gdy oszacowaliśmy π0, możemy oszacować FDR(t) jako
Licznikiem tego równania jest po prostu oczekiwana liczba wyników fałszywie dodatnich, ponieważ π0*m jest szacowaną liczbą prawdziwie zerowych hipotez, a t jest prawdopodobieństwem, że prawdziwie zerowa cecha zostanie nazwana istotną (poniżej progu t). Mianownik, jak powiedzieliśmy powyżej, to po prostu liczba cech zwanych znaczącymi.
Wartość q dla cechy jest więc minimalnym FDR, który można osiągnąć, nazywając tę ​​cechę istotną.

(Uwaga: powyższe definicje zakładają, że m jest bardzo duże, a więc S>0. Gdy S=0 FDR jest nieokreślony, więc w literaturze statystycznej wielkość E[V/?S?|S>0]?*Pr (S>0) jest używany jako FDR.Alternatywnie używany jest dodatni FDR (pFDR), który jest E[V/S?|S>0].Patrz Benjamini i Hochberg (1995) oraz Storey i Tibshirani (2003) po więcej informacji.)

Odczyty

Podręczniki i rozdziały

OSTATNI POSTĘP W BIOSTATYSTYCE (tom 4):
Wskaźniki fałszywych odkryć, analiza przeżycia i powiązane tematy
Redakcja: Manish Bhattacharjee (New Jersey Institute of Technology, USA), Sunil K Dhar (New Jersey Institute of Technology, USA) i Sundarraman Subramanian (New Jersey Institute of Technology, USA).
http://www.worldscibooks.com/lifesci/8010.html
Pierwszy rozdział tej książki zawiera przegląd procedur kontroli FDR, które zostały zaproponowane przez wybitnych statystyków w tej dziedzinie, i proponuje nową adaptacyjną metodę kontroli FDR, gdy wartości p są niezależne lub dodatnio zależne.

Intuicyjna biostatystyka: niematematyczny przewodnik po myśleniu statystycznym
autor: Harvey Motulsky
http://www.amazon.com/Intuitive-Biostatistics-Nonmathematical-Statistical-Thinking/dp/product-description/0199730067
Jest to księga statystyk napisana dla naukowców, którym brakuje skomplikowanego zaplecza statystycznego. Część E, Challenges in Statistics, wyjaśnia w kategoriach laika problem wielokrotnych porównań i różne sposoby radzenia sobie z nim, w tym podstawowe opisy współczynnika błędów dla rodziny i FDR.

Wnioskowanie wielkoskalowe: empiryczne metody Bayesa do estymacji, testowania i predykcji
Efron, B. (2010). Instytut Monografii Statystyk Matematycznych, Cambridge University Press.
http://www.amazon.com/gp/product/0521192498/ref=as_li_ss_tl?ie=UTF8&tag=chrprobboo-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=0521192498
Ta książka zawiera przegląd koncepcji FDR i zgłębia jej wartość nie tylko jako procedury szacowania, ale także jako obiektu testowania istotności. Autor przedstawia również empiryczną ocenę dokładności oszacowań FDR.

Artykuły metodologiczne

Benjamini, Y. i Y. Hochberg (1995). Kontrolowanie wskaźnika fałszywych odkryć: praktyczne i skuteczne podejście do wielokrotnego testowania. Dziennik Królewskiego Towarzystwa Statystycznego. Seria B (metodologiczna) 57(1): 289-300.
Ten artykuł z 1995 roku był pierwszym formalnym opisem FDR. Autorzy wyjaśniają matematycznie, w jaki sposób FDR odnosi się do współczynnika błędu rodzinnego (FWER), podają prosty przykład wykorzystania FDR i przeprowadzają badanie symulacyjne demonstrujące moc procedury FDR w porównaniu z procedurami typu Bonferroniego.

Storey, J.D. i R. Tibshirani (2003). Znaczenie statystyczne dla badań całego genomu. Proceedings of the National Academy of Sciences 100(16): 9440-9445.
Ten artykuł wyjaśnia, czym jest FDR i dlaczego jest ważny w badaniach całego genomu, a także wyjaśnia, w jaki sposób można go oszacować. Podaje przykłady sytuacji, w których FDR byłby użyteczny, i stanowi praktyczny przykład tego, w jaki sposób autorzy wykorzystali FDR do analizy danych o ekspresji różnicowej genów na mikromacierzach.

Piętro JD. (2010) Wskaźniki fałszywych odkryć. W Międzynarodowej Encyklopedii Nauk Statystycznych Lovric M (redaktor).
Bardzo dobry artykuł omawiający kontrolę FDR, pozytywny FDR (pFDR) i zależność. Zalecane, aby uzyskać uproszczony przegląd FDR i powiązanych metod dla wielokrotnych porównań.

Reiner A, Yekutieli D, Benjamini Y: Identyfikowanie genów o zróżnicowanej ekspresji przy użyciu procedur kontroli fałszywych odkryć. Bioinformatyka 2003, 19(3):368-375.
W tym artykule wykorzystano symulowane dane z mikromacierzy do porównania trzech procedur kontrolnych FDR opartych na ponownym próbkowaniu z procedurą Benjamini-Hochberg. Ponowne próbkowanie statystyk testowych odbywa się tak, aby nie zakładać rozkładu statystyki testowej dla różnicowej ekspresji każdego genu.

Verhoeven KJF, Simonsen KL, McIntyre LM: Implementacja kontroli wskaźnika fałszywych odkryć: zwiększenie mocy. Oikos 2005, 108(3):643-647.
W tym artykule wyjaśniono procedurę Benjamini-Hochberg, przedstawiono przykład symulacji i omówiono najnowsze osiągnięcia w dziedzinie FDR, które mogą zapewnić większą moc niż oryginalna metoda FDR.

Stan Pounds i Cheng Cheng (2004) Poprawa szacowania wskaźnika fałszywych odkryć Bioinformatyka tom. 20 nie. 11 2004, strony 1737-1745.
W niniejszym artykule przedstawiono metodę zwaną histogramem odstępów LOESS (SPLOSH). Ta metoda jest proponowana do szacowania warunkowego FDR (cFDR), oczekiwanego odsetka wyników fałszywie dodatnich, uwarunkowanych posiadaniem k „istotnych” wyników.

Daniel Yekutieli, Yoav Benjamini (1998) Współczynnik fałszywych odkryć oparty na ponownym próbkowaniu kontrolujący wiele procedur testowych dla skorelowanych statystyk testowych Journal of Statistical Planning and Inference 82 (1999) 171-196.
W tym artykule przedstawiono nową procedurę kontroli FDR, która zajmuje się statystykami testów, które są ze sobą skorelowane. Metoda polega na obliczeniu wartości p na podstawie ponownego próbkowania. Właściwości tej metody ocenia się za pomocą badania symulacyjnego.

Yoav Benjamini i Daniel Yekutieli (2001) Kontrola wskaźnika fałszywych odkryć w testach wielokrotnych w ramach zależności The Annals of Statistics 2001, tom. 29, nr 4, 1165–1188.
Pierwotnie zaproponowana metoda FDR była przeznaczona do testowania wielu hipotez niezależnych statystyk testowych. Ten artykuł pokazuje, że oryginalna metoda FDR kontroluje również FDR, gdy statystyki testowe mają dodatnią zależność regresji od każdej statystyki testowej odpowiadającej prawdziwej hipotezie zerowej. Przykładem zależnych statystyk testowych może być testowanie wielu punktów końcowych między grupą leczoną i kontrolną w badaniu klinicznym.

John D. Storey (2003) Wskaźnik dodatnich fałszywych odkryć: interpretacja bayesowska i wartość q The Annals of Statistics 2003, tom. 31, nr 6, 2013-2035.
W tym artykule zdefiniowano wskaźnik pozytywnych fałszywych odkryć (pFDR), który jest oczekiwaną liczbą wyników fałszywie pozytywnych spośród wszystkich testów zwanych znaczącymi, biorąc pod uwagę, że istnieje co najmniej jeden wynik pozytywny. W pracy przedstawiono również bayesowską interpretację pFDR.

nigdy nie raz w nas

Yudi Pawitan, Stefan Michiels, Serge Koscielny, Arief Gusnanto i Alexander Ploner (2005) Wskaźnik fałszywych odkryć, czułość i wielkość próby dla badań mikromacierzowych Bioinformatics Vol. 21 nie. 13 2005, strony 3017-3024.
W niniejszym artykule opisano metodę obliczania wielkości próby dla dwupróbkowego badania porównawczego opartego na kontroli FDR i czułości.

Grant GR, Liu J, Stoeckert CJ Jr. (2005) Praktyczne podejście do fałszywego wskaźnika odkrywania do identyfikacji wzorców ekspresji różnicowej w danych z mikromacierzy. Bioinformatyka. 2005, 21(11): 2684-90.
Autorzy opisują metody estymacji permutacyjnej oraz omawiają zagadnienia dotyczące wyboru przez badaczy metod statystycznych i transformacji danych. Zbadano również optymalizację mocy związaną z wykorzystaniem danych z mikromacierzy.

Jianqing Fan, Frederick L. Moore, Xu Han, Weijie Gu, Szacowanie proporcji fałszywych odkryć w ramach arbitralnej zależności kowariancji. J Am Stat doc. 2012; 107(499): 1019-1035.
W artykule zaproponowano i opisano metodę kontroli FDR opartą na aproksymacji głównego czynnika macierzy kowariancji statystyki testowej.

Artykuły aplikacyjne

Han S, Lee K-M, Park SK, Lee JE, Ahn HS, Shin HY, Kang HJ, Koo HH, Seo JJ, Choi JE i in.: Badanie asocjacyjne całego genomu nad ostrą białaczką limfoblastyczną u dzieci w Korei. Badania nad białaczką 2010, 34(10):1271-1274.
Było to badanie asocjacyjne całego genomu (GWAS) testujące milion polimorfizmów pojedynczego nukleotydu (SNP) pod kątem powiązania z ostrą białaczką limfoblastyczną u dzieci (ALL). Kontrolowali FDR na poziomie 0,2 i stwierdzili, że 6 SNP w 4 różnych genach jest silnie związanych z ryzykiem ALL.

Pedersen, K.S., Bamlet, W.R., Oberg, A.L., de Andrade, M., Matsumoto, ME, Tang, H., Thibodeau, S.N., Petersen, G.M. i Wang, L. (2011). Podpis metylacji DNA leukocytów odróżnia pacjentów z rakiem trzustki od zdrowych grup kontrolnych. PLoS ONE 6, e18223.
To badanie kontrolowane pod kątem FDR<0.05 when looking for differentially methylated genes between pancreatic adenoma patients and healthy controls to find epigenetic biomarkers of disease.

Daniel W. Lin, Liesel M. FitzGerald, Rong Fu, Erika M. Kwon, Siqun Lilly Zheng, Suzanne i in. Genetyczne warianty genów LEPR, CRY1, RNASEL, IL4 i ARVCF są prognostycznymi markerami specyficznymi dla raka prostaty Śmiertelność (2011), Biomarkery epidemii raka Prev.2011;20:1928-1936. W badaniu tym zbadano zmienność wybranych genów kandydujących związanych z wystąpieniem raka prostaty w celu przetestowania jego wartości prognostycznej wśród osób wysokiego ryzyka. FDR zastosowano do uszeregowania polimorfizmów pojedynczego nukleotydu (SNP) i zidentyfikowania najważniejszych SNP będących przedmiotem zainteresowania.

Radom-Aizik S, Zaldivar F, Leu S-Y, Adams GR, Oliver S, Cooper DM: Wpływ ćwiczeń na ekspresję mikroRNA w komórkach jednojądrzastych krwi obwodowej młodych mężczyzn. Nauka kliniczna i translacyjna 2012, 5(1):32-38.
W badaniu tym zbadano zmianę w ekspresji mikroRNA przed i po wysiłku za pomocą mikromacierzy. Użyli procedury Benjamini-Hochberg do kontrolowania FDR na poziomie 0,05 i stwierdzili, że 34 z 236 mikroRNA ma różną ekspresję. Badacze następnie wybrali mikroRNA z tych 34 do potwierdzenia metodą PCR w czasie rzeczywistym.

stany zjednoczone przeciwko eichman

Strony internetowe

Pakiet statystyczny R
http://genomine.org/qvalue/results.html
Kod R z adnotacjami używany do analizy danych w artykule Storey and Tibshirani (2003), w tym link do pliku danych. Kod ten można dostosować do pracy z dowolnymi danymi tablicowymi.

http://www.bioconductor.org/packages/release/bioc/html/qvalue.html
Pakiet qvalue dla R.

http://journal.r-project.org/archive/2009-1/RJournal_2009-1.pdf

Journal R Project jest recenzowaną, ogólnodostępną publikacją R Foundation for Statistical Computing. Ten tom zawiera artykuł zatytułowany „Sample Size Estimation While Controlling False Discovery Rates for Microarray Experiments” autorstwa Megan Orr i Peng Liu. Podano konkretne funkcje i szczegółowe przykłady.

http://strimmerlab.org/notes/fdr.html
Ta witryna internetowa zawiera listę oprogramowania R do analizy FDR wraz z łączami do ich stron głównych, w których można znaleźć opis funkcji pakietu.

SAS
http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.htm#statug_multtest_sect001.htm
Opis PROC MULTTEST w SAS, który zapewnia opcje sterowania FDR przy użyciu różnych metod.

STAN
http://www.stata-journal.com/article.html?article=st0209
Udostępnia polecenia STATA do obliczania wartości q dla procedur wielu testów (oblicz wartości q dostosowane do FDR).

FDR_ogólne zasoby internetowe
http://www.math.tau.ac.il/~ybenja/fdr/index.htm
Strona zarządzana przez statystyków z Uniwersytetu w Tel Awiwie, którzy jako pierwsi oficjalnie wprowadzili FDR.

http://www.math.tau.ac.il/~ybenja/
Ta strona internetowa FDR zawiera wiele dostępnych referencji. Wykład na temat FDR jest dostępny do wglądu.

http://www.cbil.upenn.edu/PAGE/fdr.html
Ładne, zwięzłe wyjaśnienie FDR. Przedstawiono przydatne, szybkie podsumowanie wraz z przykładami.

http://www.rowett.ac.uk/~gwh/False-positives-and-the-qvalue.pdf
Krótki przegląd wyników fałszywie dodatnich i wartości q.

Kursy

Samouczek dotyczący kontroli fałszywych odkryć autorstwa Christophera R. Genovese Wydział Statystyki Carnegie Mellon University.
Ten PowerPoint jest bardzo dokładnym samouczkiem dla kogoś, kto jest zainteresowany poznaniem matematycznych podstaw FDR i odmian FDR.

Testy wielokrotne Joshua Akey z Wydziału Nauk o Genomach Uniwersytetu Waszyngtońskiego.
Ten powerpoint zapewnia bardzo intuicyjne zrozumienie wielokrotnych porównań i FDR. Ten wykład jest dobry dla tych, którzy szukają prostego zrozumienia FDR bez dużej ilości matematyki.

Szacowanie współczynnika lokalnego fałszywego wykrywania w wykrywaniu ekspresji różnicowej między dwiema klasami.
Prezentacja Geoffreya MacLachlana, profesora Uniwersytetu Queensland w Australii.
www.youtube.com/watch?v=J4wn9_LGPcY
Ten wykład wideo był pomocny w poznaniu lokalnego FDR, czyli prawdopodobieństwa prawdziwości określonej hipotezy, biorąc pod uwagę jej konkretną statystykę testową lub wartość p.

Procedury kontroli współczynnika fałszywych odkryć dla testów dyskretnych
Prezentacja Ruth Heller, profesora Wydziału Statystyki i Badań Operacyjnych. Uniwersytet w Tel Awiwie
http://www.youtube.com/watch?v=IGjElkd4eS8
Ten wykład wideo był pomocny w poznaniu zastosowania sterowania FDR na danych dyskretnych. Omówiono kilka procedur zwiększania i obniżania poziomu kontroli FDR w przypadku danych dyskretnych. Przeanalizowano alternatywy, które ostatecznie pomagają zwiększyć moc.

Ciekawe Artykuły

Wybór Redakcji

Refleksja nad historią i dziedzictwem odbudowy
Refleksja nad historią i dziedzictwem odbudowy
Prezydent Bollinger moderuje panel internetowy z Kimberlé W. Crenshaw, Ericiem Fonerem i Henrym Louisem Gatesem Jr., który skupia się na tym, jak okres po wojnie secesyjnej łączy się ze współczesną polityką USA.
Tak bardzo kocha włoską piłkę nożną, że kupił drużynę
Tak bardzo kocha włoską piłkę nożną, że kupił drużynę
Rocco B.
Proces aplikacji
Proces aplikacji
Twoja podróż w kierunku zdobycia tytułu LL.M. stopień zaczyna się tutaj.
Columbia Filmmakers w oficjalnej selekcji na Festiwal Filmowy w Cannes 2020
Columbia Filmmakers w oficjalnej selekcji na Festiwal Filmowy w Cannes 2020
Cztery filmy twórców z Columbii znalazły się na liście 56 filmów wybranych do oficjalnej selekcji spośród 2067 zgłoszonych filmów fabularnych.
Peter L. Strauss
Peter L. Strauss
Peter L. Strauss jest emerytowanym profesorem prawa Betts w Columbia Law School. Wstąpił na wydział w 1971 r., dwukrotnie pełnił funkcję prodziekana, a od 1 lipca 2017 r. został emerytem. Od dawna prowadzi zajęcia z zakresu prawa administracyjnego, metod prawnych i legislacji; jako emeryt, uczył metod prawnych I i wymaganych fakultetów dotyczących ustawodawstwa i regulacji, a ostatnio zaawansowanego prawa administracyjnego. Otrzymał tytuł LL.B. z Yale Law School w 1964 roku i jego A.B. z Harvard College w 1961. Przed podjęciem studiów prawniczych pracował u Davida L. Bazelona i Williama J. Brennana w Waszyngtonie; spędził dwa lata wykładając prawo karne na krajowym uniwersytecie w Etiopii; oraz trzy lata jako adwokat w Biurze Prokuratora Generalnego, informując i prowadząc sprawy przed Sądem Najwyższym Stanów Zjednoczonych. W latach 1975-1977 Strauss przebywał na urlopie z Columbii jako pierwszy generalny doradca Komisji Dozoru Jądrowego Stanów Zjednoczonych. W 1987 roku sekcja prawa administracyjnego i praktyki regulacyjnej American Bar Association przyznała Straussowi trzecią doroczną nagrodę za wybitne stypendium w dziedzinie prawa administracyjnego. Od 1992 do 1993 pełnił funkcję przewodniczącego sekcji. Był reporterem ds. tworzenia przepisów dotyczących projektów APA i prawa administracyjnego Unii Europejskiej oraz był członkiem grupy zadaniowej E-Rulemaking. W 2008 roku Amerykańskie Towarzystwo Konstytucyjne przyznało mu pierwszą nagrodę Richarda Cudahy za esej Overseer czy „Decider”? Prezes w prawie administracyjnym. Znany z pism wprowadzających zagranicznych prawników do amerykańskiego prawa publicznego, Strauss był gościem na wydziałach prawa Uniwersytetu w Addis Abebie, Uniwersytetu w Buenos Aires, Europejskiego Instytutu Uniwersyteckiego, Uniwersytetu Harvarda, Uniwersytetu w Hongkongu, La Sapienza (Rzym), Ludwiga Maximilliansa Uniwersytet (Monachium), Instytut Porównawczego Prawa Publicznego i Międzynarodowego im. Maxa Plancka, Uniwersytet McGill, Uniwersytet Nowojorski, Sorbona (Paryż) i Uniwersytet Tokijski; wykładał szeroko za granicą na temat amerykańskiego prawa administracyjnego, w tym programy w Argentynie, Australii, Białorusi , Brazylia, Kanada, Chile, Chiny, Kolumbia, Anglia, Etiopia, Francja, Niemcy, Grecja, Hongkong, Indie, Włochy, Japonia, Holandia, Nowa Zelandia, Hiszpania, Turcja i Wenezuela. W latach 2008-2009 był Fernand Braudel Senior Fellow w Europejskim Instytucie Prawa oraz Parsons Fellow na University of Sydney Law School. Dożywotni członek Amerykańskiego Instytutu Prawa, w 2010 roku Strauss został wybrany do Amerykańskiej Akademii Sztuki i Nauki. Od dawna jest również członkiem wydziału w radzie Fundacji Prawa Publicznego przy Wydziale Prawa.
Ekonomiści Joseph Stiglitz i Thomas Piketty zajmują się zbieżnymi kryzysami dotyczącymi nierówności
Ekonomiści Joseph Stiglitz i Thomas Piketty zajmują się zbieżnymi kryzysami dotyczącymi nierówności
Pandemia, wybory prezydenckie, globalizacja, zmiany klimatyczne i inne kwestie są omawiane na forum transatlantyckim.
Stany Zjednoczone przeciwko O’Brien
Stany Zjednoczone przeciwko O’Brien
Columbia Global Freedom of Expression dąży do lepszego zrozumienia międzynarodowych i krajowych norm i instytucji, które najlepiej chronią swobodny przepływ informacji i wypowiedzi w połączonej globalnej społeczności z głównymi wspólnymi wyzwaniami, którym należy sprostać. Aby zrealizować swoją misję, Global Freedom of Expression podejmuje się i zleca projekty badawcze i polityczne, organizuje wydarzenia i konferencje oraz uczestniczy i wnosi wkład w globalne debaty na temat ochrony wolności wypowiedzi i informacji w XXI wieku.